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Abstract—The results of a comprehensive array of unsuper-
vised anomaly detection algorithms applied to Space Shuttle
Main Engine (SSME) data are presented. Most of the algo-
rithms are based upon variants of the well-known uncondi-
tional Gaussian mixture model (GMM). One goal of the paper
is to demonstrate the maximum utility of these algorithms by
the exhaustive development of a very simple GMM. Selected
variants will provide us with the added benefit of diagnostic
capability.

Another algorithm that shares a common technique for detec-
tion with the GMM is presented, but instead uses a different
modeling paradigm. The model provides a more rich descrip-
tion of the dynamics of the data, however the data require-
ments are quite modest. We will show that this very simple
and straightforward method finds an event that characterizes
a departure from nominal operation. We show that further
diagnostic investigation with the GMM-based method can be
used as a means to gain insight into operational idiosyncrasies
for this nominally categorized test. Therefore, by using both
modeling paradigms we can corroborate planned operational
commands or provide warnings for unexpected operational
commands.
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1. INTRODUCTION
As part of either manned or unmanned spaceflight, the
propulsion systems that support missions to lower earth orbit
(LEO) and/or geosynchronous earth orbit (GEO) have vary-
ing measures for success or failure. A common evaluation
criterion considers avoidance of loss of mission or loss of
crew. These costs should be identified and quantified as early
on as possible in the design process for development of ro-
bust failure detection systems. Such systems can be used to
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alert the crew or ground operators of potential signatures and
precursors to catastrophic failure on missions ranging from
ground-based test fires to manned spaceflight. Characteri-
zation of these costs, as well as the sensitivity of the alarm
system is critical to avoid spurious alerts or missing potential
precursors altogether. In some cases the algorithms used to
implement these advanced caution and warning systems can
be used in real-time, or for forensic post-hoc analysis.

Pragmatically, it is common for such algorithms to consider
costs that are assigned to very specific critical events. The
question of how to optimize these costs by way of robust
anomaly detection, diagnosis, and prognosis has great sig-
nificance for integrated systems health management. When
indications of system abnormalities are presented by fault de-
tection algorithms, we want to be sure about the severity of
the anomalies as well as their implications. As such, we the-
matically discuss statistical performance analysis and metrics
for failure detection systems, although the results we present
are preliminary in nature.

Well-known performance metrics can be derived from the
confusion matrix and Receiver Operating Characteristic
(ROC) analysis as detailed in [7]. They are clearly excel-
lent candidates to aid in determining alarm system sensitiv-
ity, as well as follow-on assignment of costs as discussed
above. However, the application of this method and result-
ing interpretations must be measured carefully. Barring the
availability of consistent data with faults or failures that are
comparable both in severity and functional impact, the over-
all results of such an analysis might falsely indicate poor per-
formance. However, we still introduce the results by using
the confusion matrix-based and related ROC metrics, forgo-
ing the assignment of costs at this stage. The true value of
the results can more clearly be demonstrated in the diagnos-
tic utility and ability to detect faults by using data outside of
their functional categorization with a visual representation of
the anomalies detected.

Space Shuttle Main Engine (SSME) data has been investi-
gated in several previous studies, using various methods from
artificial intelligence such as the nearest neighbor-based and
decision tree approaches. Two unsupervised anomaly detec-
tion algorithms implemented by Orca and GritBot demon-
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strate these methods, respectively. Detailed results of the ap-
plication of these algorithms have been previously published
by Schwabacher [24]. Furthermore, Tumer and Agogino [1]
have presented an information theoretic entropy-based algo-
rithm for anomaly detection in SSME data, and Fiorucci et.
al. [10] present a vibration-based analysis for a documented
high pressure turbopump blade failure. The former are just a
small sample of analyses performed on SSME data, and is by
no means meant to serve as a comprehensive list. However,
they serve as excellent benchmarks and address a technically
challenging and very important applied research objective.

We use these research studies as motivation to pursue al-
ternate means of the application of anomaly detection algo-
rithms to SSME data. In doing so, we can provide further cor-
roboration of existing failures as additional measures of de-
tection and diagnostic ability. This adds to the growing repos-
itory of SSME-based studies, allowing for a more exhaustive
investigation of previous failures and building a comprehen-
sive array of tools. Therefore, we aim to provide an additional
method from which to select in order to meet modest goals
within integrated systems health management. These include
the ability to corroborate potential failures, as well as to de-
tect and diagnose previously unknown benign sensor failures,
or even precursors to potential systemic failures.

In this paper we provide alternative techniques for anomaly
detection in SSME data using two basic modeling paradigms.
The algorithms to be presented are based upon standard para-
metric methods that can easily be discussed within the frame-
work of Bayesian methods and probabilistic graphical mod-
eling. The two modeling methods to be investigated are the
unsupervised Gaussian mixture model, and a standard linear
dynamic system. The latter of the two methods makes basic
allusions to the algorithmic blending of control theory and
machine learning. However, to the author’s knowledge, this
is a novel comparison and corroboration of these basic tech-
niques using SSME data.

Both modeling paradigms will use a very straightforward
method for anomaly detection, based upon previous research
by Pontoppidan and Larsen [22], where a maximum allow-
able threshold for the probability of false alarm can be se-
lected. This is an objective common to many algorithms, such
as the one presented by Bickford [3]. The overall goal of the
paper is to provide a comprehensive assessment and compar-
ison of the methods introduced, highlighting the diagnostic
strengths and potential for extension to more theoretically rig-
orous methods that will enhance predictive capability.

Methods Investigated

The use of unsupervised Gaussian Mixture Models (GMM’s)
represents the driver for most of the techniques to be investi-
gated. In the probabilistic graphical model framework shown
in Fig. 1, a sequence of outputs serve as N independent ob-
servations to train models for unsupervised, or unconditional
GMM’s. The mixture of experts paradigm models both an

independent sequence of N outputs and N inputs. Shaded
nodes represent observed data, and unshaded nodes represent
hidden nodes which require inference. The unconditional or
unsupervised GMM on the left of Fig. 1, as well as the para-
meters listed as θ = (α1, . . . ,αM , µ1, . . . , µM ,Σ1, . . . ,ΣM )
represent the model that will be used throughout this paper.

We take the time to point this out to make the distinction
between using the terminology “unsupervised” as described
above and the definition of “unsupervised learning,” where no
labeled examples of failures and nominal trials are available
to train a model. In our case, we do have labeled examples
of failures and nominal trials, however, the labels are used
only for validation, and not in the training of the model. As
such, the methods we present fall not only within the “unsu-
pervised” method from the input-output standpoint, but also
for the purposes of machine learning and model development.

Because of the limited availability of examples of failures, we
use nominal training data only, as in [2], [12], [24] without the
use of techniques such as random stratification of the data,
which is traditionally used to prevent any bias when com-
paring training results to validation results. Another model-
ing paradigm is also investigated, that can also be expressed
within the probabilistic graphical model framework, as shown
in Fig. 2. Here we can see that the model to be learned is
a dynamic system, and observed data is also represented by
shaded nodes. The hidden nodes still represent unobserved
random variables which need to be inferred, however in this
case they are continuous (Gaussian) random variables, not
discrete (multinomial) random variables as in the case of the
GMM.

Additionally, the hidden random variables are chained to-
gether in a Markovian fashion, which provides for a measure
of dynamic memory, or temporal dependence such that the
time slices are serially correlated. This linear dynamic system
modeling representation can also be augmented to allow for
input-output relationships to be enforced, as in the right hand
side of Fig. 1. However, in this paper, we will consistently in-
vestigate unsupervised models. The motivation for using this
paradigm as an alternate modeling construct and more detail
on its mechanics will be presented in the subsequent section.

Data-Driven Modeling

The data to be used with the models presented previously
can actually be categorized functionally, due to the nature of
the systems and available sensors onboard the Space Shuttle
Main Engine (SSME). Controller data contains important in-
formation relevant to the major systems of the engine, such as
pressures, temperatures, control system parameters, valve po-
sitions, etc. Vibration data contains measurements recorded
mainly from accelerometers that represent an array of sensors
placed to monitor the structural integrity of the engine. All of
the data obtained will allow for more effective health manage-
ment systems to be developed. In this paper, both controller
and vibration data will be studied independently, as well as
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Figure 1. Gaussian Mixture Models

Figure 2. Linear Dynamic System

the combination of both controller and vibration data into a
feature vector. There is also a third category of data, often
stored separately in facility data files, that contain measure-
ments from sensors placed on test stands only. This category
will not be investigated in this paper.

Table 1 shows the data sources, and categorical determina-
tion of which tests are nominal or potentially anomalous. The
breakdown of which tests are used for training the models and
which are used for validation is presented. Controller data is
available for all tests shown in Table 1, but vibration data
is not necessarily available for all tests. As such, the train-
ing/validation breakdown serves the purpose of investigating
controller data only.

In the column labeled “Data Sources,” either test stand data is
used, or data from actual shuttle flights. For the latter, the “#”
refers to the engine number for that particular flight, as the
space shuttle is configured with 3 SSME’s. The test stand
data naming convention can be parsed by reference to the
actual physical test stand used (prefixed by A1 or A2), and
concatenation of the test number. The first digit of the test
number can loosely be used to determine if a different con-
figuration is used. There are different configurations (Block
I, Block IIA, Phase II) that span the flights shown in Table
1 as well. As such, we are using a hybrid mix of not only
different data sources, but different SSME configurations and
the flight/non-flight status as well.

This should contribute nicely towards the heterogeneity of the
model, with more operating conditions available for training,
and helping to prevent biased results, since no new configu-
rations are part of the validation data set. However, this also
has the disadvantage of fundamentally skewing the statistics
of the model from the case in which the training and valida-
tion data sets are based only on a single configuration, as is
often performed. In this case, the model would retain the ho-
mogeneity of the chosen configuration, and the results would
be expected to exhibit a sharper discrimination due to more
consistent statistics. However, there are significantly fewer
within-configuration tests available to perform a ROC analy-
sis that is statistically significant.

The tests that are labeled as potential anomalies in Table 1 are
in most cases functionally correlated to a specific data type,
i.e. they appear only in sensors of a particular functional cate-
gory. This may also bias the results when using ROC analysis
or confusion matrices. Given all of the biases and impacts on
generating results whose metrics are based upon ROC analy-
sis and confusion matrices, we will also demonstrate the di-
agnostic utility and ability to detect faults through visual in-
terpretation as supporting evidence of performance.

When a subset of common sensors are selected for training
and validation, the dimension of the feature vector is often
reduced substantially. However, depending on the functional
data category, there can still be as many as 130 parameters
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Table 1. Training/Validation Breakdown for Controller Data

Data Sources
Training Validation
Nominal Nominal Potential Anomalies

Flight Data

STS-77 (#1) STS-103 (#2) STS-77 (#2)
STS-78 (#1) STS-103 (#3) STS-91 (#1)
STS-78 (#2) STS-106 (#1) STS-93 (#1)
STS-78 (#3) STS-106 (#2) STS-93 (#3)

Test Stand Data - Source #1
A10851 A10852 A10853
A20726 A20750 A20619A20858

Test Stand Data - Source #2 A20631 A20643 A10853
A20823 A20619

to train on. The computational complexity of the algorithms
will increase considerably as a result. As such, in order to
decrease the computational burden, we can reduce the di-
mensionality of the data using various methods. There are
many candidates, including Sammon nonlinear mapping [13].
However, the two that will be investigated in this paper are
Principal Components Analysis (PCA), and taking the sum
of z-scores over all sensors. These two methods are much
less computationally intensive than using Sammon nonlin-
ear mapping in which validation requires a redefinition of the
map, although alternate methods exist to address this issue,
such as the use of neural networks [4].

As a comprehensive exercise, the results of unreduced data
will also be generated for comparison. In the case of GMM’s
this means that the Gaussian distributions will be multivari-
ate, with the cases of spherical, diagonal, and full covariance
matrices investigated. In addition, an individual GMM can
be trained for each sensor, which adds the dimension of di-
agnostic capability in addition to detection. However, this
diagnostic capability is only available when the scoring met-
ric used for classification is applied on an individual basis,
and not on an aggregate basis. Finally, there will be no data
reduction necessary for the models that use linear dynamic
systems. This is due to the computational burden being re-
duced significantly as a result of the data requirements in-
volving only the difference between two sensor values rather
than all sensor values.

2. METHODOLOGY

In this section, we will describe the details of the two models
investigated and used in conjunction with a common anomaly
detection algorithm. The anomaly detection algorithm is im-
plemented as an alarm system, which will also be described
in detail.

Gaussian Mixture Models

The Gaussian mixture model has the advantage of standard
parametric flexibility that is easily understood. Without loss
of generality, Eqns. 1-2 represent the distribution of the fea-
ture vector, yk ∈ Rn, at a single point in time, and repre-

senting the joint likelihood of the entire time series, up to N ,
respectively.

p(yk) =
M∑

j=1

αjN (yk;µj ,Σj) (1)

p(y0, . . . ,yN ) =
N∏

k=0

M∑

j=1

αjN (yk;µj ,Σj) (2)

The parameters, as shown in Fig. 1, are trained using the stan-
dard EM (Expectation- Maximization) algorithm originally
introduced by Dempster et. al. [5], and implemented with
code freely available by Ian Nabney, detailed in [21]. Para-
metric initialization for the M mixture weights (αj), means
(µj), and covariance matrices (Σj) was performed using vari-
ous implementations of the k-means algorithm, one of which
was from [21]. Another initialization method can be used
when n = 1, using a single feature or data reduction. The
initialization is performed by binning the data as a univariate
histogram. The dominant clusters are identified visually, and
the statistics of the data contained in the bins corresponding
to the dominant clusters are treated as the initial means and
variances. The mixing proportions in this case are assigned
equal probabilities.

Now this previously described method can only be used in
the case when PCA or sum of z-scoring is used to dimen-
sionally reduce the data, or n = 1 in any other case. Fur-
thermore, in the case where an individual GMM is trained
for each sensor, it is simplest to choose a default number of
clusters based upon the dominant sensor rather than manually
select the dominant bins for each sensor. For the SSME, the
dominant sensor for controller data is the throttle, or power
level. From this we can identify the maximum number of
power levels visited throughout most of the excursions of the
training data sets. This value can be used as a guide in setting
the maximum number of clusters to be used for all sensors for
which a GMM is trained individually.

In the case where there is non-convergence of the EM algo-
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rithm or convergence to infeasible answers, this may indicate
overfitting, and is a case in which choosing the maximum
number of clusters based on the dominant sensor fails. In
this case, we simply implement an automated procedure to
decrease the number of clusters incrementally until the EM
algorithm converges.

Selecting the optimal number of clusters is even more of a
challenge when multi-dimensional Gaussian mixture compo-
nents are used. In this case, with yk ∈ Rn, and when n " 1,
clustering can no longer be performed visually. Instead, clus-
tering can be performed by using a prediction strength indi-
cator. This prediction strength indicator introduced in [26]
uses a supervised learning concept to determine the maxi-
mum number of clusters that can be accurately predicted by
using a clustering technique such as k-means. The one dis-
advantage in practice is that the implementing code can be
computationally burdensome when attempting to generate an
ensemble estimate of the “breakpoint,” or minimum number
of clusters yielding reasonable prediction strength. In the case
of the multi-dimensional Gaussian, only a single model needs
to be trained. Therefore, using the computationally inten-
sive prediction strength algorithm is useful for initialization
only. It is not used with the exhaustive GMM per-sensor ap-
proach, where applying the prediction strength method would
be computationally prohibitive.

Some of the fundamental challenges and disadvantages of us-
ing GMM’s are very well elucidated in [14]. One of the chal-
lenges addresses our assumption that the data can be well de-
scribed by a mixtures of Gaussian distribution with a select
number of clusters. However, we do not truly have any intu-
itive cause for believing that this is innately how the physi-
cal mechanisms generating the SSME sensor data are mani-
fested. In such cases, nonparametric density estimators may
be used as a viable alternatives, and are suitable candidates
for future research. However, the robustness of using GMMs
will be elaborated on in detail in a subsequent section, specif-
ically in reference to the quantitative and qualitative perfor-
mance metrics introduced thus far.

Linear Dynamic Systems

The second modeling paradigm to be implemented in detail
has a more thorough intuitive basis than the GMM. Essen-
tially, the motivation behind training a linear dynamic system
is threefold.

1. The training data is univariate, i.e. n = 1, and represents
the difference between the commanded throttle and actual
throttle. In control systems terminology, this is the control
system error, e(t), traditionally used as the input to a con-
troller, as shown in Fig. 3.
2. To provide for a more rich description of the dynamics of
the data in which the data requirements are quite modest.
3. To lay the groundwork for the application and advanced
development of more sophisticated anomaly detection tech-
niques requiring the use of Linear Dynamic Systems and

Figure 3. Closed-Loop Control System Block Diagram

Kalman Filtering in future research. These methods will pro-
vide an additional level of predictive capability.

There are two primary control systems that operate in support
of the SSME. One is the throttle control system, which reg-
ulates the main combustion chamber pressure. This throttle,
or power level, can also be determined by this pressure via
a scaling factor. The other major control system that func-
tionally supports the SSME is the mixture ratio control sys-
tem. This system maintains the oxidizer/fuel mixture ratio at
a desired level. We will only focus on the throttle control sys-
tem error in this paper, due to the commanded throttle qual-
itatively being the apparent driver for so many other sensor
readings.

In Fig. 3, the closed-loop control system representation il-
lustrates that the actual throttle level, y(t), is subtracted from
the desired or commanded throttle level, r(t), to obtain the
control system error, e(t) = r(t) − y(t). The block labeled
C represents the controller, which we can nominally assume
to be a very simple PI (proportional-integral) controller. The
PI controller takes the control system error and computes the
appropriate actuation to deliver to the plant, labeled as block
P . The plant may be subject to input noise, w(t), which is
introduced directly into the state dynamics. Finally, as the
feedback loop is closed, measurement noise, v(t), may be
additively introduced to the output of the plant to form y(t),
which represents the actual throttle level used by the control
system.

The state dynamics of the open-loop plant, P , can be ex-
pressed by equations 3-4.

ẋ(t) = Aox(t) + Bou(t) + Bwow(t) (3)
y(t) = Cox(t) + v(t) (4)

where

w(t) ∼ N (0, Qo)
v(t) ∼ N (0, Ro)

The state of the system is represented by x(t) ∈ Rn. In this
case we choose n = 2, in order to strip the dynamics down to
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the most minimal case in which the plant is a first order sys-
tem, and the controller is a PI controller. All matrices in the
equation above are also subscripted with “o” in order to dis-
ambiguate between the open-loop dynamics and the closed-
loop state dynamics yet to be presented. Clearly this is an
extravagant simplification, however in doing so we allow for
the closed-loop control system dynamics to be represented in
controllable canonical form. Furthermore, we are at the very
minimum allowing for the introduction of some dynamics, as
distinct from the GMMwhere no dynamics are modeled. Due
to the unavailability of the actual plant dynamics and control
system design parameters, we default to the simplest case in
order to generate a workable model.

There are several transfer functions that can be formed from
the closed-loop state dynamics. The one that we are most in-
terested in from the machine learning standpoint is TFw→e,
or the closed loop dynamics that represent the transfer func-
tion from input noise to error. Because the data available to
us for training is the control system error, e(t) = r(t)− y(t),
we can reformulate the dynamics of the closed-loop feed-
back control system into a standard representation that can
be treated as an unsupervised problem in machine learning
(i.e., using output observations only). This is performed by
loosely approximating the measured control system error us-
ing the transfer function TFw→e.

More formally, we know that the part of the block diagram
shown within the dotted line in Fig. 3 represents the closed-
loop dynamics. As such, we can express the control system
error as a function of the variables that represent exogenous
inputs to the closed-loop within the dotted line, as shown in
Eqns. 5-6.

e(t) = ‖ TFr→e ‖ r(t)+ ‖ TFw→e ‖ w(t) (5)
+ ‖ TFv→r ‖ v(t)

= er(t) + ew(t) + ev(t) (6)

Therefore, in a sense, everything within the dotted line can be
reformulated to represent the closed loop dynamics, where
the desired output is e(t). Ultimately, we would like to be
able to express these dynamics as shown in Eqns. 7-8 below.

q̇(t) = Aq(t) + Bww(t) (7)
ew(t) = Cq(t) + v(t) (8)

again, where

w(t) ∼ N (0, Q)
v(t) ∼ N (0, R)

These equations fit the modeling paradigm represented by our
machine learning problem represented in Fig. 2 perfectly

(after discretization). But we still need to determine how
to enforce this paradigm, given our current objective which
involves a slightly skewed output definition, by considering
e(t) in lieu of y(t). We are interested in e(t) as a whole,
however only the first of the following exogenous inputs are
readily available for measurement: r(t), w(t), and v(t).

Therefore, the most accurate modeling representation of e(t)
requires supervision, where the input is the known reference
signal r(t). The remaining input and measurement noise in-
puts are never measured, and would need to be introduced
into the standard formulation shown in Eqns. 7-8 if possible.
Otherwise, constraints would be required to be imposed dur-
ing the learning process to allow for w(t) and v(t) to remain
uncorrelated. This would be necessary so that they can be
introduced as a single augmented exogenous noise input via
concatenation.

However, because the problem is being treated as unsuper-
vised, we will need to make some approximations by remov-
ing both the closed-loop commanded input term er(t), and
the closed-loop measurement noise term, ev(t) from consid-
eration. By ignoring these terms we lose some accuracy in ap-
proximating e(t). Therefore, the final approximation to allow
for a loose interpretation of the closed-loop transfer function
of TFw→e is e(t) ≈ ew(t) =‖ TFw→e ‖ w(t). Eqns. 7-8
cleanly represent the state-space realization of the approxima-
tion for unsupervised learning. Note that after discretization
of these equations, we can use the approximation ew(t) in
place of y(t) shown in Fig. 2 .

The controllable canonical form shown in Eqns. 9-11 is used
to allow for a mapping to intuitive canonical parameters: the
natural frequency, ωn, and the damping ratio, ζ. We can esti-
mate the natural frequency by making an assumption of e(t)
to be represented by a zero-mean stationary Gaussian random
process. In this case, we can use Rice’s formula for the level-
upcrossing rate [15], [23], as shown in Eqn. 12, to compute
the natural frequency, ωn = σė

σe
. This formula can be derived

very easily [17], and is used in similar studies [8], [9], [18].

A =
[

0 1
−ω2

n −2ζωn

]
(9)

Bw =
[

0
ω2

n

]
(10)

C =
[

1 0
]

(11)

ν+
e =

σė

2πσe
e−

1
2 (L−µe

σe
)2

(12)

By using L = 0 as a candidate level, all we need is to count
the number of zero-upcrossings of the sample data, and com-
pute the 2nd-order statistics: µe, and σe in order to use Rice’s
formula to find ωn. In case µe = L = 0, we simply need ν+

e ,
as ωn = σė

σe
= 2πν+

e .
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During the learning procedure for the linear dynamic system,
the EM algorithm is used to find the parameters shown in Fig.
2. Details of this procedure are provided in Zoubin and Hin-
ton [11] as well as Digalakis et. al. [6], and it is implemented
using Murphy’s BNT (Bayes’ Net Toolbox) [20]. Initializa-
tion of the parameters shown as θ in Fig. 2 is also performed
using some basic heuristics. By initializing ζ = 1 and clamp-
ing ωn during training, we can back out the learned value of
the damping ratio ζ. Initial values for A and Bw can be de-
rived as a function of ζ and ωn,C =

[
1 0

]
is fixed during

learning, and R is initialized by making a guess at the SNR
(signal to noise ratio), so that R = σ2

ew
SNR (σ2

e ≈ σ2
ew
can be

computed directly from the data).

Using these assumptions, and by use of steady-state
continuous-time Lyapunov equations for Eqns.7 and 8 (cf.
P0 from Fig. 2), we can find an adequate initialization for
Q, as is performed in [17], [18]. We then discretize all pa-
rameters using the sampling interval Ts, and the procedure
outlined in [18], allowing us to form Eqns. 13 - 14, which
support the variables shown in Fig. 2, again using the ap-
proximation ewk in place of yk.

qk+1 = Adqk + wk (13)
ewk = Cdqk + vk (14)

where

wk ∼ N (0,Qd)
vk ∼ N (0, Rd)

Ad = eATs

Bd = (eATs − I)A−1B
Cd = C

Rd =
R

Ts

Qd =
∫ Ts

0
eAλBwQBT

weAT λdλ

Throughout learning, we attempt to retain the controllable
canonical structure in order to allow for determination of the
learned value for ζ. This is easily performed by the allowance
for enforcement of arbitrary constraints in Murphy’s BNT
[20], and slight modification of the appropriate open-source
routines. Doing so introduces sub-optimality into the learning
procedure, which means that the learning curve will not nec-
essarily increase monotonically. However, a reasonable sub-
optimal local minimum will be found that best represents the
parameter space with enforcement of the controllable canon-
ical form constraint.

Alarm Systems and Anomaly Detection

We now present the methods and motivations for designing
the alarm systems, largely based upon a novelty detection

method introduced in Pontoppidan and Larsen [22] as well
as Larsen et. al [16]. Here, the conditional likelihood or
log-likelihood functions are evaluated with streaming obser-
vations against a threshold in order to meet the criterion set
for the maximum allowable probability of false alarm. The
design of this decision rule is facilitated by the formation of
an empirical cumulative distribution of the likelihood or log-
likelihood values, and setting an acceptance/rejection crite-
rion for the null hypothesis of anomalous behavior. We can
use any significance level (i.e. p = 0.05) as the maximum
allowable probability of false alarm. Eqns. 16-17 are ex-
pressed without loss of generality, and the design criterion
for the decision rule is expressed by the inequality shown in
Eqn. 17. The likelihood or log-likelihood function values for
the selected threshold , l, serves as a scoring metric that can
be used for anomaly detection, or synonymously as the basis
of the decision rule.

J(l) #= P (log(p(yk|θ)) < l) (15)
-or-

J(l) #= P (p(yk|θ) < l) (16)
J(l) < pmax (17)

Here we see that J(l) represents the empirical cumulative dis-
tribution function of either the likelihood, or log-likelihood
values. Eqns. 15-16 are presented in a generic enough fash-
ion to allow for any representation of p(yk|θ), so that im-
plicitly either modeling paradigm can be used. This anomaly
detection-based alarm system can also easily be implemented
in real-time. Eqn. 18 is the representation of p(yk|θ) in the
case of GMM’s that are trained on reduced data, or individual
sensors.

p(yk|θ) =
M∑

i=1

αiN (yk;µi,σ
2
i ) (18)

where

θ = (α1, . . . ,αM , µ1, . . . , µM ,σ2
1 , . . . ,σ2

M )

As alluded to in previous section, when independent GMM’s
are trained on individual sensors, the anomaly detection algo-
rithm is augmented with diagnostic capability. In fact, there
are as many alarm systems as there are sensors, but an alarm
in one sensor may or may not be indicative of an alarm for
all sensors, which is how the diagnostic capability is demon-
strated. Although this is an added benefit, any interactions
between the sensors cannot be modeled using this exhaustive
modeling method.

Alternatively, we can form an aggregate alarm system with-
out having to reduce the data using methods described earlier.
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This can be performed either for the case in which multiple
GMMs are trained individually per sensor, or for the case of
a single GMM for all sensors. In the latter case, the sensors
can be modeled either as independent or as correlated obser-
vations, so that interactions between the sensors are modeled.
Eqn. 19 represents p(y1

k, . . . , yn
k |θ)1 in the former case, and

Eqn. 20 represents p(yk|θ) in the latter.

p(y1
k, . . . , yn

k |θ) =
n∏

j=1

Mj∑

i=1

αijN (yj
k;µij ,σ

2
ij) (19)

where

θ = (α11, . . . ,αMnMn , µ11, . . . , µMnMn ,σ2
11, . . . ,σ

2
MnMn

)

p(yk|θ) =
M∑

i

αiN (yk;µi,Σi) (20)

diag=
M∑

i

αi

n∏

j=1

N (yj
k;µj

i , (σ
j
i )

2)

sph=
M∑

i

αi

n∏

j=1

N (yj
k;µj

i ,σ
2
i )

where

θ = (α1, . . . ,αM , µ1, . . . , µM ,Σ1, . . . ,ΣM )

Eqn. 20 can be redefined as shown when the sensor observa-
tions are modeled as being correlated. In this case, p(yk|θ)
has slightly different definitions when the covariance matrix,
Σ, is spherical or diagonal instead of full. Furthermore, there
is a subtle distinction to make between Eqns. 1 and 19. Note
that Eqn. 1 represents the joint likelihood of the entire time
series, up to k = N , for a multidimensional feature vec-
tor, yk ∈ Rn. This form is often used to compute the ex-
pected complete log-likelihood function in deriving the equa-
tions used in the EM algorithm. Eqn. 19 represents the joint
likelihood of n uncorrelated GMM’s for n univariate sensor
observations of yi

k, i ∈ {1, . . . , n} at a single point in time, k.
In this case, if using the log-likelihood version of J(l), then
Eqn. 21 applies.

log(p(y1
k, . . . , yn

k |θ)) =
n∑

j=1

log
Mj∑

i=1

αijN (yj
k;µij ,σ

2
ij)

(21)

1Notationally, indexed superscripts refer to elements of a vector for all
equations in the paper.

In case of Eqn. 20, for a multidimensional feature vector,
yk ∈ Rn, the log-likelihood version of J(l) can be repre-
sented as Eqn. 22-23, for both a diagonal and a spherical
covariance matrix, respectively.

log(p(yk|θ))
diag= log

M∑

i=1

αi

n∏

j=1

N (yj
k;µj

i , (σ
j
i )

2) (22)

log(p(yk|θ))
sph= log

M∑

i=1

αi

n∏

j=1

N (yj
k;µj

i ,σ
2
i ) (23)

The representation of p(yk|θ) can also be expressed as a func-
tion of the parameters of the linear dynamic system, as shown
in Eqn. 24

p(yk|θ) = N (yk; 0,CdPssCT
d + Rd) (24)

where2

P0 = Pss = AdPssAT
d + Qd

Recall that yk in Eqn. 24 is actually represented by ewk ,
and that the continuous time equivalent is e(t) ≈ ew(t)
=‖ TFw→e ‖ w(t). Although this an approximation, of
the three additive terms that form e(t), the transfer function
‖ TFw→e ‖ represents the quantity that we want to penalize
the most from an anomaly detection perspective. Because this
transfer function most closely characterizes the magnitude of
input noise disturbances, we can assume that any outliers are
truly significant.

The control system was most likely designed with both refer-
ence command following and disturbance rejection in mind.
However, when large disturbances influence the plant, P , to
the extent that the control system cannot reject them expedi-
ently, this may be indicative of a significant event which is
cause for diagnostic investigation. The reference command
following transients and measurement noise are almost al-
ways representative of nominal plant behavior during throttle
changes and standard sensor noise, respectively. Therefore, it
is reasonable to assume that the terms reflecting these charac-
teristics are negligible.

3. RESULTS
Testing Conditions

The sample data used for both training and validation shown
in Table 1 were often recorded at different sampling rates.
Because of memory limitations, the data was downsampled

2Steady-State (Algebraic) Discrete-Time Lyapunov Equation
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using the largest sampling interval prior to loading into mem-
ory for algorithmic processing. The characterization of this
preprocessing step as pure downsampling is not entirely ac-
curate, due to the fact that the raw data was averaged as well.
Some files could not be downsampled prior to loading into
memory due to incompatible file formats. These files were
decimated after being loaded into memory using the same
sampling interval, and by using a low pass Chebyshev filter.

Each of the failures listed in Table 1 has a unique description
and functional categorization. Often, the failure will present
most clearly in a single sensor, depending on its severity. Ta-
ble 2 lists the type of failure, approximate severity, and func-
tional categorization.

The differences in failure types and severities have clear im-
plications for the aggregation of the results using ROC analy-
sis. However, we can still speak to the ability of each algo-
rithm under consideration to maximize true positives based
upon the severity of the failure. Table 3 lists all of the possi-
ble scenarios to be investigated. It should be noted that sen-
sor data which is functionally categorized as vibration data,
or “both” controller and vibration data use a slightly different
training/validation breakdown than is shown in Table 1.

In Table 1, eight nominally classified training datasets are
listed along with the same number of nominal validation
datasets and anomalous validation sets. Of the latter, two
datasets are redundantly listed because their origination dif-
fers. Of the eight nominally classified training datasets, tests
A20858 and A20631 do not contain any vibration data or vi-
bration sensors that are used in the other tests. The same is
true for tests A20643 and A20823 of the eight nominally clas-
sified validation datasets, and tests A10853 and A20619 cor-
responding to data source #2 only, for the eight anomalous
validation sets. Therefore, they are eliminated for experi-
ments shown in Table 3 to have a functional categorization
of vibration data, or “both” controller and vibration data.

Other important conditions for both training and validation
data are the consideration of the operating conditions of the
system. It may very well be that the available data contains
statistical outliers that are completely nominal from an oper-
ational standpoint. The main example of this is during start-
up, shutdown, or any major throttling transient that the engine
experiences. As such, we will train and validate models only
during periods of nominally steady state operation. For the
purposes of this paper, this is to include any time after the
startup transient, before shutdown, and allowing for a 1 sec
settling time after major throttling changes.

When training a linear dynamic system model with vibration
in lieu of controller data, the modeling paradigmmakes a sub-
tle shift. The control system motivation presented in Sec. 2
no longer applies, and as such training of the model using the
EM algorithm no longer requires the clamping and constrain-
ing of specific parameters. The only modeling consideration

Table 3. Cases for Investigation

Label Model Data Reduction Functional
Categorization

A GMM PCA Controller
B GMM Z-Scoring Controller
C GMM PCA Vibration
D GMM Z-Scoring Vibration
E GMM PCA Both
F GMM Z-Scoring Both
G GMM None (spherical) Controller
H GMM None (diagonal) Controller
I GMM None (full) Controller
J GMM None (aggregate) Controller
K GMM None (diagnostic) Controller
L GMM None (spherical) Vibration
M GMM None (diagonal) Vibration
N GMM None (full) Vibration
O GMM None (aggregate) Vibration
P GMM None (diagnostic) Vibration
Q GMM None (spherical) Both
R GMM None (diagonal) Both
S GMM None (full) Both
T GMM None (aggregate) Both
U GMM None (diagnostic) Both
V LDSa None (CSE)b Controller
W LDS Z-scoring Vibration
X LDS Z-scoring Both

aLinear Dynamic System
bControl System Error

is for the data reduction to be performed using the sum of z-
score method. This is necessary in order to allow for enforce-
ment of the zero-mean Gaussian random process assumption.

Although presented with a very straightforward design cri-
terion in Sec. 2, J(l) < pmax, there is still flexibility in
choosing a particular type of threshold. Recall that pmax

is the significance level (i.e. p = 0.05), or the maximum
allowable probability of false alarm. As presented previ-
ously, anomalies are classified by the corresponding deci-
sion rule log(p(yk|θ)) < l. However, recall that either
J(l) = P (log(p(yk|θ)) < l) or J(l) = P (p(yk|θ) < l)
can be used as the basis of designing the decision rule. This
is often useful when using the former log-likelihood version
of J(l). In this case there is more allowance for infinitesimal
values of pmax to be equivalently selected, which otherwise
would not be accessible using the latter likelihood version. As
such, we will use this version for all results to be presented.
The fact that straightforward evaluation of p(yk|θ) is the lim-
iting computational bottleneck of this algorithm facilitates its
ease of translation to real-time implementation.
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Table 2. Characterization of Failures

Failure Data Failure Type Functional Categorization Severity
STS-77 (#2) Anomalous Spike in Sensor Reading Controller Mild
STS-91 (#1) Sensor Failure Controller Mild
STS-93 (#1) Controller Failure Controller Moderate
STS-93 (#3) Fuel Leak and Controller Failure Controller Moderate to Severe
A20619 Knife Edge Seal Crack Vibration Moderate to Severe
A10853 Turbine Blade Failure Vibration Severe

ROC Analysis

The ROC analysis can be performed using either relaxed or
strict conditions for forming the confusion matrix. The strict
condition dictates that an alarm sound prior to the known
time of the anomaly, where the relaxed condition allows for
the alarm to sound at any time for a test that was classified
as anomalous. For cases K, P, and U, where the diagnostic
GMM per-sensor approach is used, we will define the strict
condition as at least one sensor alarming prior to the known
time of the anomaly. For the case of the relaxed condition, at
least one sensor should alarm at any time during the test. The
metrics to be used as a basis for assessing the performance
will be the ROC curve statistics and the percentage accuracy
as a function of the appropriate threshold (see [7] for precise
definition of % accuracy as a function of confusion matrix el-
ements). The quantitative summary for all cases meeting the
following criteria is provided in Table 4.

1. The subject case yields a feasible model.
2. The maximum accuracy is better than 50%.
3. At least one point on the ROC curve lies above the “ran-
dom guessing” line.
4. The case is subject to using the relaxed criterion.

This table shows the maximum accuracy, and corresponding
log-likelihood value, as well as the best ROC curve statis-
tics (true positive and false positive rates). The “best” ROC
curve statistics do not necessarily correspond to the same
log-likelihood threshold that yields the maximum accuracy.
Rather, the resulting true and false positive rates were often
identical over entire ranges of thresholds due to the lack of
sufficient data. As such, very few unique points were found
on the ROC curve, making it easy to select the “best” points
(with more emphasis on minimizing false positives). This is
a subjective matter due to the fact that some alarm system
designers may balance true and false positives quite differ-
ently, speaking directly to the issue of the assignment of costs.
Therefore, when there was not a clear ‘best” point, more than
one was provided in Table 4.

The experiments which used data reduction techniques such
as PCA and sum of z-scoring did not yield any better or worse
results than for the other cases shown in Table 4. The same
can be said for the assorted variety of unreduced data experi-
ments. Allowing for correlated features by lifting the restric-
tion on the covariance matrix from spherical or diagonal to

Table 4. ROC Analysis

Label Max
Accuracy Threshold

a
Best ROC Stats

b

A 62.5% -15 (25%/0%)
B 62.5% [-100,-12] (25%/0%)
C 83.3% [-4,-3] (83.3%/16.6%)

D 62.5% [-140,-12]∪-9 (33.3%/0%)
(66.6%/33.3%)

E 58.3% [-417,-80]∪
[-19,-11] (16.6%/0%)

F 66.6% [-100,-20]∪
[-11,-8] (33.3%/0%)

G 68.8% -417 (37.5%/0%)
H 68.8% [-700,-400] (37.5%/0%)
J 56.3% -417 (50%/37.5%)
K 62.5% [-700,-400] (25%/0%)
L 66.6% [-280,-140] (33.3%/0%)
M 83.3% -139 (66.6%/0%)
N 83.3% -139 (66.6%/0%)
O 66.6% [-278,-140] (33.3%/0%)
P 66.6% -140 (33.3%/0%)

U 75% [-700,-400] (50%/0%)
(66.6%/16.6%)

V 75% -15 (62.5%/12.5%)
W 83.3% -15 (66.6%/0%)

aCorresponding Log-Likelihood based threshold range
bTrue/False Positive Rates

fully correlated would intuitively seem to provide some addi-
tional information. However, the parameter space is still lim-
ited only to the mixtures, not the sensors. Inadequate para-
metric flexibility may be the reason for the lack of a boost
in performance in using multivariate Gaussian mixture mod-
els with a full feature space, even when using full covariance
matrices. When using vibration data, however, the results are
consistently better (Cases C, M, and N).

Full parametric flexibility can be allowed by training a GMM
per sensor, and implementing an alarm system that operates
in an aggregate sense (cf. Eqns. 19 and 21). When doing so,
however, the diagnostic power of the algorithm is removed,
and the aggregation is implicitly an attempt at post-analysis
data reduction. Therefore, failures that present only in a par-
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ticular sensor may be overlooked by this method of imple-
menting an alarm system. As a result, GMM-based experi-
ments in which each individual sensor has its own alarm sys-
tem may perform better. However, without more examples
per experiment, it is difficult to ascertain this with any level
of confidence.

Comparing the LDS (Linear Dynamic System) based exper-
iments V and W may be dubious as well, because one case
uses a larger dataset, which also has no exposure to vibra-
tion data. Specifically, for Case V, which is trained on larger
dataset of controller data only, the statistics are still favor-
able, even though Case W has a higher maximum accuracy.
This is largely due to the fact that failures presenting in vi-
bration data can quite advantageously be detected with mod-
els that are based on controller data only. At the same time,
the model in Case V is still able to detect moderate to severe
controller-based failures, yielding a 75% max accuracy, and
a 62.5%/12.5% split for the true/false positive rates. Because
of the larger dataset, and even more importantly the lack of
sufficient data to claim statistical significance, these statistics
are not necessarily any better or worse than that of Case W.

For Cases C, M, N, and W, only the subset of tests speci-
fied previously that contain vibration data or vibration sen-
sors used in all other tests were used for validation. As such,
the correctly classified anomalies are on average the more se-
vere examples, as shown in Table 2, with the exception of the
Knife Edge Seal Crack in Test A20619, which is rarely de-
tected using low frequency data. Furthermore, the statistics
are naturally higher due to the fact that vibration data was
used to train these models, in which all vibration-based fail-
ures were detected in addition to the more severe controller-
based failures. This naturally yields more favorable statis-
tics, as there is a bias towards vibration failures for a reduced
dataset.

On average, the anomalies incorrectly classified as nominal
are the tests labeled in Table 2 to have a “mild” severity. False
positives also present in the ROC analysis, sometimes due to
statistical modeling noise, and other times having a very clear
operational explanation. Perhaps if we used either a more ac-
curate method of selecting the number of clusters per sensor
in the model for the GMMmethod, i.e. the BIC (Bayes Infor-
mation Criterion) as is used in [22], or used a finer threshold
grid for the ROC analysis for all methods, the accuracy may
have been increased.

Another drawback of the GMM method is that the final vali-
dation results are often hyper-representative of the raw train-
ing data used to build the models. When controller data is
used for training, we know that almost all sensors are driven
by the commanded throttle. The qualitative signature of the
commanded throttle is present even when the data is reduced.
As such, if commanded throttle levels had not been visited
previously in training data sets, validation data sets contain-
ing unseen throttle excursions will be incorrectly classified as

anomalous. The same is true for other sensors that may or
may not be directly correlated the commanded throttle, such
as valve positions. Such sensors may have had planned ex-
cursions throughout the course of a trial run or flight, but ex-
perienced a different one during validation.

A common cause for this phenomenon is due a change in the
configuration of the SSME. Although this bears out as a false
positive with respect to the ROC analysis, in an operational
sense, we can look at this as being useful from the stand-
point of providing warnings for unexpected operational com-
mands. Furthermore, this phenomenon does not exist for the
LDS method, where the training data is transformed by using
control system error. Here, the influence of throttle is only ap-
parent during major transients, and not throughout the course
of the trial run or flight. Because models were trained using
data only during periods of nominally steady state operation,
there can be no bias due to unseen throttle levels using this
method.

As alluded to a number of times, the statistical significance
of results shown in Table 4 is dubious for two reasons. One
reason is the absence of consistent data with faults or failures
that are comparable both in severity and functional impact.
The second reason has to do with the lack of sufficient data to
support a statistically significant analysis. The overall results
of the analysis might therefore falsely indicate poor perfor-
mance, or even superior performance. As this is a preliminary
assessment, the interpretation of these results must be mea-
sured carefully barring the availability of more examples of
failures to work with. However, one advantage that still bears
out in the ROC analysis is that failures presenting in vibration
data can be found with models based on controller data only,
primarily by using the LDS-based algorithmic technique.

Diagnostic Findings

There is a distinction to be made between the cases which
are used purely for detection, and those that enable diagnos-
tic reporting capability. Cases K, P, and U use a diagnos-
tic GMM per-sensor approach, in which independent GMM’s
are trained on individual sensors. Again, for these cases there
are as many alarm systems as there are sensors, however, an
alarm in one sensor may or may not be indicative of an alarm
for all sensors. This logic allows for determination of which
sensor is causing the problem, and its approximate severity.
The severity can be inferred by corroboration with an array
of other sensors that may be indicative of a more systemic
problem rather than a more benign single sensor failure. This
corroborative functionality and qualitative determination of
severity is how the diagnostic capability is demonstrated.

The examples which most clearly demonstrate the utility of
the diagnostic benefit are for one of the failures shown in Ta-
ble 2, and for another nominally categorized test. For test
A10853, in which a high pressure turbopump blade failure
was found in vibration data [10], the LDS model was used to
detect this anomaly at the same time as was indicated in [10].
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Figure 4. A10853 Control System Error

An illustration of this anomaly found in the control system
error is provided in Fig. 4, along with the commanded throt-
tle, steady-state periods, and offending vibration sensor (PID
80) superimposed.

Commanded throttle and steady-state periods are superim-
posed to allow for the demonstration of how large changes
in the control system error are the result of nominal throttling
transients. However, there should not be any large excursions
in the control system error during steady-state periods. The
first indication of an anomaly is at 130 sec, however, there
are also some alarms at the very end of the trial run. These
alarms are the result of a negative log-likelihood value (cf.
log of Eqn. 24) exceeding a chosen threshold. ROC curves
can be used to select this optimal design threshold for im-
plementation. The procedure is to select an optimal design
point from the portion of the ROC curve that corresponds to
all training files being classified as nominal. This heuristic
provides us with a guideline for ensuring that an optimal de-
sign point is not selected purely on the basis of the accuracy
of the validation data, but of the training data as well.

We can use the GMM-based diagnostic models to gain further
insight into the potential reasons for these anomalies found
by deviations from control system error. As shown in Figs.
5 and 6, both alarm times are corroborated by other sensors.
In the case of the first indication of an anomaly at 130 sec
in Fig. 5, a vibration sensor is determined to be the basis of
alarm. The algorithm-specific scoring metric (negative log-
likelihood value), is illustrated in lieu of the actual sensor
value, along with the chosen threshold. Presentation of the
anomaly in this sensor can also be corroborated by the work

Figure 5. A10853 Vibration Sensor Diagnosis

of Fiorucci et. al. [10].

Additionally, the alarms at the very end of the trial run are
found to be diagnostically linked to a controller sensor, shown
in Fig. 6. This is a temperature sensor that clearly rises
rapidly at the very end of the test, providing us with further
indication of an anomaly most likely caused by the event de-
tected previously as a precursor to this rise. It should be clear
from Figs. 5 and 6 that in general these alarms correspond
to the same alarms in Fig. 4 for which the LDS model was
used. We should point out that different thresholds were used
for both the GMM and LDS models, since the sensitivity of
the threshold for each model will vary accordingly. As a re-
sult, the alarms for both methods will not coincide exactly. It
is nonetheless important to perform an exhaustive search in
order to determine the optimal threshold for each sensor and
each model.

In validation test A10852, which was nominally categorized,
an anomaly was detected using the LDS model in the range of
210 to 240 sec. An illustration of this anomaly is provided in
Fig. 7. There appears to be no reason for the large change in
control system error, as the anomalies occur during a steady-
state period. However, after performing a diagnostic investi-
gation using the GMM per-sensor approach, we find that the
cause of the anomaly is due to a change in mixture ratio dur-
ing this time period, as was found in [1]. This is illustrated in
Fig. 8.

In hindsight, we found that this change of mixture ratio was
a planned event. However, there is still utility in being able
to characterize departures from nominal operation, whether
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Figure 6. A10853 Controller Sensor Diagnosis

Figure 7. A10852 Control System Error

Figure 8. A10852 Mixture Ratio Diagnosis

they are planned or unplanned. This allows us to gain in-
sight into operational idiosyncrasies, when planned reference
changes are incorporated into the training data. Therefore, by
using both modeling paradigms we can corroborate planned
operational commands or provide warnings for unexpected
operational commands.

The diagnostic utility of the GMM per sensor method does
not end with the corroboration of anomalies found by differ-
ent means. For tests that were either anomalously or nomi-
nally categorized, it is very possible to diagnose sensor fail-
ures of a less severe nature that weren’t previously detected.
An example is test A20619, in which case there was a tem-
perature sensor failure that can be corroborated by other al-
gorithms such as the one implemented by Orca [2], [24].

4. CONCLUSION
The main contribution of this paper has been to present the re-
sults of a very simple approach in data mining, using various
methods of implementation. The two main modeling para-
digms used were the unsupervised Gaussian mixture model
and a simple canonical 2nd order linear dynamic system. In
the former approach, all available data was used, whereas in
the latter approach, only the control system error is used. The
following list highlights the most important points covered in
this paper.

• Many more examples of failures are needed to allow for a
ROC analysis that is statistically significant.
• The validation results of the GMM method are heavily in-
fluenced by the training data. The same is not true for the
LDS method, where the training data is transformed by using
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control system error.
• The GMM per sensor modeling paradigm provides a useful
diagnostic reporting capability.
• With the two modeling paradigms used in tandem, they
serve to corroborate planned operational commands or pro-
vide warnings for unexpected operational commands.
• Failures presenting in vibration data can be found with
models based on controller data only, primarily by using the
LDS-based algorithmic technique.

In future research studies, we plan to investigate alternate and
more sophisticated modeling paradigms such as mixture of
experts, supervised LDS, and switching Kalman filters [19].
In addition, one of the motivations for introducing the LDS
paradigm was to lay the groundwork for the application and
advanced development of more sophisticated anomaly detec-
tion techniques requiring the use of Linear Dynamic Systems
and Kalman Filtering. Specifically, the design of optimal
alarm systems [18], [25] can incorporate thresholds in a more
theoretically rigorous fashion, while providing an additional
level of predictive capability.
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